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Objectives of the project

• Produce global daytime mean fluxes from radiances observed by NISTAR and EPIC (Su et al., 
2018, 2020, 2021)

– Determine the global daytime mean SW and LW anisotropic factors (Su et al., 2018)

– Use EPIC cloud composite data for scene identification  (Khlopenkov et al., 2017), and for evaluating 
EPIC cloud product (Yang et al., 2019)

• Evaluate the global climate models using the high-temporal-resolution fluxes (Carlson et al., 
2019, Feldman et al., 2021, Lacis et al., 2021)

• Calibrate EPIC visible channels using MODIS, VIIRS, and invariant targets (Doelling et al.,  
2019, Haney et al., 2016, 2021)
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Global daytime mean radiances from NISTAR and EPIC

• NISTAR provides continuous broadband radiance measurements for the shortwave and total 
channels from the sunlit side of the Earth as a single pixel. 

• EPIC provides 10 narrow band spectral images of the entire sunlit side of the Earth using a 
2048x2048 pixel CCD (Charge Coupled Device) detector. 

– Use the EPIC narrowband channels of blue, green, and red to derive the shortwave (SW) broadband 
reflectance (Su et al., 2018).

– Narrowband to broadband (NB2BB) regression coefficients are developed based upon collocated 
MODIS and CERES data for all-sky conditions separately for ocean and non-ocean surfaces using 
corresponding MODIS channels.

– Apply these relationships to EPIC 443, 551, and 680nm channels to derive EPIC broadband radiance 
(Ibbe) for each pixel. 

– EPIC pixel-level broadband SW radiances are averaged to calculate the global daytime mean shortwave 
radiance.
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Radiances depend on the EPIC viewing geometry 

• DSCOVR’s elliptical Lissajous orbit is a quasi-periodic orbit and its distance and viewing 
geometries change from day to day.

• From January 2017 to June 2019, the relative azimuth angles show small month-to-month 
variations and the maximum value does not exceed 175°. However, the relative azimuth angles of 
2020 show large month-to-month changes with the maximum relative azimuth angle exceeding 
178° in December. 
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Radiance increases as relative azimuth angle increases
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Anisotropy of the TOA radiance field must be 
considered when converting radiances to fluxes
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• Using the scene-type dependent CERES empirical angular distribution models (ADMs, Su et al. 
2015); 

• Scene type is defined based upon many variables: surface type, cloud fraction, cloud optical 
depth, cloud phase, wind speed, etc.;

• Low spatial resolution of EPIC imagery (20x20 km2) and its lack of infrared channels diminish 
its capability to identify clouds and to accurately retrieve cloud properties;

• To determine the scene type for each EPIC pixel, we take advantage of the cloud property 
retrievals (Minnis et al. 2008, 2021) from multiple imagers on low Earth orbit (LEO) satellites 
and on geostationary (GEO) satellites;

• Cloud property retrievals from these LEO/GEO imagers are optimally merged together to 
provide a seamless global composite product at 5-km resolution.



Global composite data are then remapped into the EPIC field of view by 
convolving the high-resolution cloud properties with the EPIC point spread 

function to produce the EPIC composite: an example of 11:15 UTC, 4 Jan. 2017
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Global daytime mean cloud fractions differ little between 2017 and 2020
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Global mean anisotropic factors increase as the EPIC relative azimuth angles move 
closer to backscattering direction 
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• The EPIC relative azimuth angle is 170°
for December 5, 2017, and it is 177°
for December 5, 2020.

• The SW anisotropic factors for the 
two UTC times are:

– 2017: 1.241/1.254

– 2020: 1.343,/1.375

2017

2020



Anisotropic factors change as relative azimuth angles

• The clear cropland anisotropy factor increases by up to 30% around θ = 40° (the hot sport) 
when the relative azimuth angle moves from 170° to 179°. 

• Anisotropy factor for liquid clouds increases by up to 9% around the glory (θ = 60°) when the 
relative azimuth angle moves from 170° to 179°.
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SW flux differences between 2017 and 2020 are much smaller than SW radiance differences
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Comparison between EPIC and CERES SYN fluxes

• CERES synoptic product (SYN) 
also provides hourly TOA SW and 
LW fluxes;

• To compare the hourly SYN data 
with EPIC flux, only consider the 
daytime SYN grid boxes that are 
visible to EPIC, and these data 
are weighted by cos(latitude): 
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Daytime SW 
flux from 
CERES SYN 

EPIC view mask:
Red: Daytime areas 
within EPIC view
Grey: Nighttime 
areas within EPIC 
view
Blue line: terminator 
boundary

<latexit sha1_base64="MqGBoUw8s0mJ/JCmaUzQXQ3hsdQ="></latexit>

Fsyn =

P
Fjcos(latj)!jP
cos(latj)!j



Comparison between EPIC and CERES SW fluxes for May and December
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Global daytime SW flux comparison between CERES and EPIC 
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Hourly gridded CERES synoptic (SYN) SW fluxes are integrated over 
the areas that are visible to EPIC/NISTAR. 
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Monthly daytime mean SW fluxes from EPIC and CERES 

• Multi-year mean EPIC SW flux is 202.3 Wm-2
• Multi-year mean CERES SYN SW flux is 202.8 Wm-2
• RMS error is 1.3 Wm-2
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Summary

• Produced EPIC cloud composite and EPIC SW flux from January 2016 to June 2021. 

• EPIC SW fluxes agree very well with CERES SYN SW fluxes, despite the viewing geometries 
of EPIC differ significantly from CERES.

• CERES angular distribution models capture the anisotropy changes for relative azimuth 
angles between 168° to 178°. 
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